2 resultados para Blood-brain-barrier

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blood brain barrier (BBB) is a semi-permeable membrane separating the brain from the bloodstream, preventing many drugs that treat neurological diseases, such as Alzheimer’s and Parkinson’s, from reaching the brain. Our project aimed to create a novel drug delivery system targeting the brain during neural inflammation. We developed a cationic solid lipid nanoparticle (CSLN) complex composed of cationic nanoparticles, biotin, streptavidin, and anti-vascular cell adhesion molecule-1 (anti- VCAM-1) antibodies. The anti-VCAM-1 antibody is used to target VCAM-1, a cell adhesion protein found on the BBB endothelium. VCAM-1 expression is elevated in the presence of inflammatory molecules, such as tumor necrosis factor-alpha (TNF- α). Through the use of a simple BBB model, results showed that our novel drug delivery system experienced some level of success in targeting the brain inflammation due to increasing TNF-α concentrations. This is promising for drug delivery research and provides support for VCAM-1 targeting using more robust and complex BBB models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal stretching during concussion alters glucose transport and reduces neuronal viability, also affecting other cells in the brain and the Blood Brain Barrier (BBB). Our hypothesis is that oxidative stress (OS) generated in neurons during concussions contributes to this outcome. To validate this, we investigated: (1) whether OS independently causes alterations in brain and BBB cells, namely human neuron-like, neuroblastoma cells (NCs), astrocyte cells (ACs) and brain microvascular endothelial cells (ECs), and (2) whether OS originated in NCs (as in concussion) is responsible for causing the subsequent alterations observed in ACs and ECs. We used H2O2 treatment to mimic OS, validated by examining the resulting reactive oxygen species, and evaluated alterations in cell morphology, expression and localization of the glucose transporter GLUT1, and the overall cell viability. Our results showed that OS, either directly affecting each cell type or originally affecting NCs, caused changes in several morphological parameters (surface area, Feret diameter, circularity, inter-cellular distance), slightly varied GLUT1 expression and lowered the overall cell viability of all NCs, ACs, and ECs. Therefore, we can conclude that oxidative stress, which is known to be generated during concussion, caused alterations in NCs, ACs, and ECs whether independently originated in each cell or when originated in the NCs and could further propagate the ACs and ECs.